Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This work integrates machine learning into an atmospheric parameterization to target uncertain mixing processes while maintaining interpretable, predictive, and well‐established physical equations. We adopt an eddy‐diffusivity mass‐flux (EDMF) parameterization for the unified modeling of various convective and turbulent regimes. To avoid drift and instability that plague offline‐trained machine learning parameterizations that are subsequently coupled with climate models, we frame learning as an inverse problem: Data‐driven models are embedded within the EDMF parameterization and trained online in a one‐dimensional vertical global climate model (GCM) column. Training is performed against output from large‐eddy simulations (LES) forced with GCM‐simulated large‐scale conditions in the Pacific. Rather than optimizing subgrid‐scale tendencies, our framework directly targets climate variables of interest, such as the vertical profiles of entropy and liquid water path. Specifically, we use ensemble Kalman inversion to simultaneously calibrate both the EDMF parameters and the parameters governing data‐driven lateral mixing rates. The calibrated parameterization outperforms existing EDMF schemes, particularly in tropical and subtropical locations of the present climate, and maintains high fidelity in simulating shallow cumulus and stratocumulus regimes under increased sea surface temperatures from AMIP4K experiments. The results showcase the advantage of physically constraining data‐driven models and directly targeting relevant variables through online learning to build robust and stable machine learning parameterizations.more » « less
-
Training Physics‐Based Machine‐Learning Parameterizations With Gradient‐Free Ensemble Kalman MethodsAbstract Most machine learning applications in Earth system modeling currently rely on gradient‐based supervised learning. This imposes stringent constraints on the nature of the data used for training (typically, residual time tendencies are needed), and it complicates learning about the interactions between machine‐learned parameterizations and other components of an Earth system model. Approaching learning about process‐based parameterizations as an inverse problem resolves many of these issues, since it allows parameterizations to be trained with partial observations or statistics that directly relate to quantities of interest in long‐term climate projections. Here, we demonstrate the effectiveness of Kalman inversion methods in treating learning about parameterizations as an inverse problem. We consider two different algorithms: unscented and ensemble Kalman inversion. Both methods involve highly parallelizable forward model evaluations, converge exponentially fast, and do not require gradient computations. In addition, unscented Kalman inversion provides a measure of parameter uncertainty. We illustrate how training parameterizations can be posed as a regularized inverse problem and solved by ensemble Kalman methods through the calibration of an eddy‐diffusivity mass‐flux scheme for subgrid‐scale turbulence and convection, using data generated by large‐eddy simulations. We find the algorithms amenable to batching strategies, robust to noise and model failures, and efficient in the calibration of hybrid parameterizations that can include empirical closures and neural networks.more » « less
-
Abstract Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered.more » « less
-
Abstract We demonstrate that an extended eddy‐diffusivity mass‐flux (EDMF) scheme can be used as a unified parameterization of subgrid‐scale turbulence and convection across a range of dynamical regimes, from dry convective boundary layers, through shallow convection, to deep convection. Central to achieving this unified representation of subgrid‐scale motions are entrainment and detrainment closures. We model entrainment and detrainment rates as a combination of turbulent and dynamical processes. Turbulent entrainment/detrainment is represented as downgradient diffusion between plumes and their environment. Dynamical entrainment/detrainment is proportional to a ratio of a relative buoyancy of a plume and a vertical velocity scale, that is modulated by heuristic nondimensional functions which represent their relative magnitudes and the enhanced detrainment due to evaporation from clouds in drier environment. We first evaluate the closures offline against entrainment and detrainment rates diagnosed from large‐eddy simulations (LES) in which tracers are used to identify plumes, their turbulent environment, and mass and tracer exchanges between them. The LES are of canonical test cases of a dry convective boundary layer, shallow convection, and deep convection, thus spanning a broad range of regimes. We then compare the LES with the full EDMF scheme, including the new closures, in a single column model (SCM). The results show good agreement between the SCM and LES in quantities that are key for climate models, including thermodynamic profiles, cloud liquid water profiles, and profiles of higher moments of turbulent statistics. The SCM also captures well the diurnal cycle of convection and the onset of precipitation.more » « less
An official website of the United States government
